DERIVADAS DE LAS FUNCIONES ELEMENTALES
\[ y=K=cte \hspace{3em} y\prime=0 \]
\[ y=x^n \hspace{3em} y\prime=n \cdot x^{n-1} \]
\[ y=x \hspace{3em} y\prime=1 \]
\[ y=\sqrt[n]{x} \hspace{3em} y\prime= \frac{1}{n \cdot \sqrt[n]{x^{n-1}}} \]
\[ y=\sqrt{x} \hspace{3em} y\prime=\frac{1}{2 \cdot \sqrt{x}} \]
\[ y=a^x \hspace{3em} y\prime=a^x \cdot La \]
\[ y=e^x \hspace{3em} y\prime=e^x \]
\[ y=log_ax \hspace{3em} y\prime=\frac{1}{x \cdot La} \]
\[ y=Lx \hspace{3em} y\prime=\frac 1x \]
\[ y=senx \hspace{3em} y\prime=cosx \]
\[ y=cosx \hspace{3em} y\prime=-senx \]
\[ y=tagx \hspace{3em} y\prime=\frac{1}{cos^2x} \]
\[ y=arcsenx \hspace{3em} y\prime=\frac{1}{\sqrt{1-x^2}} \]
\[ y=arccosx \hspace{3em} y\prime=\frac{-1}{\sqrt{1-x^2}} \]
\[ y=arctagx \hspace{3em} y\prime=\frac{-1}{1+x^2} \]
\[ y=secx \hspace{3em} y\prime=tgx \cdot secx \]
\[ y=cosecx \hspace{3em} y\prime=-ctgx \cdot cosecx \]
\[ y=ctgx \hspace{3em} y\prime=\frac{-1}{sen^2x} \]
\[ y=arccosecx \hspace{3em} y\prime=\frac{-1}{x \cdot \sqrt{x^2-1}} \]
\[ y=arcsecx \hspace{3em} y\prime=\frac{1}{x \cdot \sqrt{x^2-1}} \]
\[ y=arcctgx \hspace{3em} y\prime=\frac{-1}{1+x^2} \]